The U.S. and China will lead, claiming over half of the global installations by the end of this decade, according to a new outlook by Bloomberg New Energy Finance (BNEF).
According to the latest outlook from Bloomberg New Energy Finance (BNEF), energy storage installations — which BNEF defines as stationary batteries used in ancillary services, energy shifting, transmission and distribution grids investment deferral, customer-sited, and other applications but does not include pumped hydro storage — will reach a cumulative 358 gigawatts/1,028 gigawatt-hours by the end of 2030, more than twenty times larger than the 17 gigawatts/34 gigawatt-hours online at the end of 2020.
This boom in stationary energy storage will require more than $262 billion of investment, BNEF estimates.
Global adoption
BloombergNEF’s 2021 Global Energy Storage Outlook estimates that 345 gigawatts/999 gigawatt-hours of new energy storage capacity will be added globally in the nine years between 2021 and 2030. The U.S. and China are the two largest markets, representing over half of the global storage installations by 2030. The clean power ambitions of state governments and utilities propel storage deployment in the U.S. In China, the ambitious installation target of 30 gigawatts of cumulative build by 2025 and stricter renewable integration rules boost expected storage installations.
Other top markets include India, Australia, Germany, the U.K. and Japan. Supportive policies, ambitious climate commitments, and the growing need for flexible resources are common drivers.
Energy storage is an educational track at DISTRIBUTECH International, set for Dallas, Texas, January 26-28. See educational sessions here.
Regionally, Asia-Pacific (APAC) will lead the storage build on a megawatt basis by 2030, but the Americas will build more on a megawatt-hour basis, because storage plants in the U.S. usually have more hours of storage. The EMEA region (Europe, Middle East and Africa) currently lags behind its counterparts due to the lack of targeted storage policies and incentives, which BNEF finds surprising, considering Europe’s ambitious climate targets. Growth in the region could accelerate as renewables penetration surges, more fossil-fuel generators exit and the battery supply chain becomes more localized.
Yiyi Zhou, clean power specialist at BNEF and lead author of the report, said in a press release that storage is growing at an “unprecedented pace.”
“Energy storage projects are growing in scale, increasing in dispatch duration, and are increasingly paired with renewables,” Zhou added.
Storage use-cases grow
BNEF’s forecast suggests that 55%, of energy storage build by 2030 will be to provide energy shifting (for instance, storing solar or wind to release later). Co-located renewable-plus-storage projects, solar-plus-storage in particular, are becoming commonplace globally.
Customer-sited batteries, both residential and commercial & industrial ones, will also grow at a steady pace. Germany and Japan are currently leading markets, with sizeable markets in Australia and California. BNEF expects energy storage located at homes and businesses to make up about one quarter of global storage installations by 2030. The desire of electricity consumers to use more self-generated solar power and appetite for back-up power are major drivers.
Other applications, such as using energy storage to defer grid investment, may remain marginal in most markets out to 2030. Build could pick up if regulatory barriers are removed and incentives are aligned for network owners to consider storage as an alternative to traditional infrastructure investment.
Next-gen utility business models are the focus of an educational track at DISTRIBUTECH International, set for Dallas, Texas, January 26-28. See educational sessions here.
Yayoi Sekine, head of decentralized energy at BNEF, added: “This is the energy storage decade. We’ve been anticipating significant scale-up for many years and the industry is now more than ready to deliver.”
Battery chemistries and technologies expand
Rapidly evolving battery technology is driving the energy storage market. The report finds that the industry is adopting multiple lithium-ion battery chemistries. In 2021, lithium-iron phosphate (LFP) will be used more than nickel-manganese-cobalt (NMC) chemistries for stationary storage for the first time. LFP will become the major lithium-ion battery chemistry choice in the energy storage sector until at least 2030, driven by its dominant role in China and increasing penetration in the rest of the world. BNEF also updated its technology outlook to include sodium-ion batteries, a lithium-ion battery contender, which could play a meaningful role by 2030.
Besides batteries, many non-battery technologies are under development, such as compressed air and thermal energy storage. Many of these can provide longer dispatch duration compared to batteries, looking to supply during prolonged periods of low renewable energy generation in future net-zero power systems. However, BNEF expects batteries to dominate the market at least until the 2030s, in large part due to their price competitiveness, established supply chain and significant track record. If new technologies successfully outcompete lithium-ion, then total uptake may well be larger.
Energy storage breakthroughs is an educational track at POWERGEN International, set for Dallas, Texas, January 26-28. See educational sessions here.